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MULTIDOMAIN COLLOCATION TECHNIQUES FOR A 
VISCOUS COMPRESSIBLE FLOW 

BO KJELLMERT 
Diviswn of Physics, Luled University of Technology. 995187 Lule&, Sweden 

SUMMARY 
This paper presents a viscous compressible flow problem to which an equilibrium solution, in terms of 
density and velocity, can be given implicitly by elementary functions. The corresponding initial boundary 
value problem is solved by time discretization by the Crank-Nicolson method, Newton linearization and 
space discretization using multidomain Chebyshev collocation techniques. The physical interval is covered 
by subintervals of equal length. Each subinterval utilizes the same number of collocation points and each 
interface consists of one or two points. Six ways of patching are tested. All of them yield solutions with 
spectral accuracy for a few time steps, but only three are stable in the long run. Details of the density 
evolution are illustrated. 
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INTRODUCTION 

The Burgers equation is a non-linear partial differential equation for which analytic solutions are 
known in terms of the initial conditions. It is a popular test problem for spectral schemes.' 
Among others, multidomain techniques have been applied to this problem.2 

In this paper a similar but slightly more complicated test problem is presented for multidomain 
Chebyshev collocation schemes. We start from the compressible Navier-Stokes equations and, 
after some assumptions, arrive at an essentially parabolic system for the density and the velocity. 
An exact equilibrium solution to this problem can be constructed implicitly and can be matched 
to describe the structure of a steady shock.3 The corresponding time-dependent one-dimensional 
system of equations is a suitable testbench for patching techniques. 

The solution is advanced in time by the Crank-Nicolson method, the equations are linearized 
by a Newton method and then discretized in space. For simplicity the x-interval is composed of 
elements of equal length where each element utilizes the same number of collocation points. Six 
patching schemes are studied. Three of them are long-time stable. They involve 

(i) explicit enforcement of continuity of functions and first derivatives across the interface 
(ii) overla-xplicit enforcement of continuity of functions and first derivatives and 

collocation of governing differential equations across the interface 
(iii) overla-xplicit enforcement of continuity of functions twice and collocation of 

governing differential equations across the interface. 
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BASIC EQUATIONS 

The one-dimensional flow of a viscous compressible diatomic gas is described by 

continuity equation 

ap/at + pau/ax + uap/ax = 0, t € ] O ,  TI, X € ]  - 1,1], 

momentum equation 

where 

boundary conditions 

p = l  and u = u i n ,  x = - 1 ,  

u = uout, x = + 1, (W 
initial conditions to be defined below. 

In (la-c) all quantities are non-dimensional; p is the mass density, u is the velocity, 8 is the 
temperature, M is a Mach number, A is a dynamic viscosity and y = 1.4. 

When deriving (la-c), the dynamic viscosity has been assumed to be proportional to the square 
root of the temperature," the pressure to be proportional to the density and the temperature, and 
the total enthalpy to be constant. 

Equation (la) is a hyperbolic equation for p and (lb) is a parabolic equation for u. The 
boundary conditions (lc) are therefore natural for positive uin and uOut. 

Equations (la-c) represent a bad model of a real gas. There is, however, at least one exception. 
For air the total enthalpy remains constant throughout a steady shock.' Now u stands for the gas 
velocity relative to a frame attached to the shock, and the time-independent solution to (la-c) 
gives the structure of a steady shock for appropriate values of the parameters. The steady solution 
is constructed implicitly by elementary functions; see Reference 5 for details. Now let 

uoUl = 0.234 243 53. (Id) A = 0.2, M =  J3, Uin = 1, 

Then the equilibrium density and velocity profiles are obtained as shown in Figure 1. Obviously, 
only a section of the shock is studied-a section which contains more than half of the steep 
portion and is truncated where p and u reach almost constant values. This analytic solution, 
called AES, will provide suitable initial values of p and u when testing methods for solving the 
time-dependent equations (1). 

Another smooth initial solution, (CFS) to (la-c) is given by 

~ ( x )  = ~ ( u o u t  - Uin) + (uout + Uin), 

p ( x )  = l / u ( x ) ,  X € [  - 1,1]. 

Here u varies linearly between the boundaries, the parameters are given by (Id) and the flux pu is 
constant. In the sequel the analytic equilibrium solution AES or the constant-flux solution CFS 
will define the initial conditions. 
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Figure 1. Density and velocity profiles for a steady shock (AES) 

NUMERICAL PROCEDURE 

Time discretization and linearization 

The partial differential equations (la, b) are time discretized by the Crank-Nicolson method. 
They then turn into ordinary differential equations for p ( = p " )  and u (=u") at time nAt, 
n = 1,2, , , , ; the superscript denotes the time level and At is the time step. Initially, the density p o  
and the velocity uo are prescribed. Equations (la-c) take the form 

F , ( p ,  d p l d x ,  u, aulax)  = 0, X € ]  - 1,1], 

p = 1 and u = u i n ,  x =  -1,  

x = + 1. 

F,(p,ap/~x,~,au/dx,a~u/dx') 50, ~ € 1 -  1,1[, 

u = U0",, 

The solution p ,  u to 2(a-c) is determined iteratively by a Newton method. Let the iteration 
number be denoted by the subscript k and let 

po = p"-' and uo = u"-I, n = 1,2, . . 
One anticipates that p k ,  uk converge towards p", u" as k increases. To avoid cancellation, delta 
functions are introduced: 

A p k = p k - p n - '  and AUt=Uk-U"-l  . k = l , 2  . . . . .  
For brevity the notation 

P = APk, u = Auk 

will be used in the sequel until otherwise stated. 

(2a-c) become, after some algebra, 

continuity equation 

Expanding F, and F, in Taylor series around values evaluated at the previous iteration, 

A , p + B , u + C , a p / a x + D , a u / a x = H , ,  X € ] - 1 , 1 ] ,  (34 
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momentum equation 

A2p + B,u + C,ap/ax + D,au/ax + a2u/ax2 = H,, X E ]  - 1 , 1 [ ,  (3b) 

boundary conditions 

p = u = o ,  x = - l ,  
u = o ,  x = + l .  

The expressions for the coefficients A,, . . . , H, depend on functions evaluated at iteration 
number k - 1 .  HI and H ,  also depend on functions from the previous time step n - 1. Observe 
that F ,  and F, are not expanded around p " - l ,  u"-l but around pk - , , Uk - The resulting 
coefficients therefore demand a new calculation for each iteration. 

One-domain space discretization 

the series 
By a standard Chebyshev collocation method a functionf(x), X E  [ - 1 ,  11, is represented by 

N 

where N is an integer and 
k = 0,1, . . . , N and the expansion coefficients are given by 

(x) = cos(j cos- x). The collocation points are Xk = cos( n k / N ) ,  

N 

withf, =f(xk), co = cN = 2 and cj = 1 for j = 2,3, . . . , N - 1. The series representation approx- 
imatesf(x) for x E [ - 1, 11 and equalsf(x) at the collocation points. 

The first and second derivatives of f(x) are approximated by expansions with coefficients 
defined by the uj .  Differentiation matrices D(l) and D(,) are introduced such that 

The elements of D(') and D(,) are well known.6 

then be written in matrix form: 

continuity equation 

This formalism is applied to the functions p(x) and u(x) which satisfy (3). The equations can 

N 

j = O  
c (AM, ,  p j  + BM,Uj) = Hli  , (44 

momentum equation 
N 

j = O  
1 ( C M ,  p j  + D M ,  U j )  = H2i, 

boundary conditions 

P N  = 0, UN = 0, uo = 0. (44 
By retaining all but the last ( i  = N )  scalar equations in (4a) and all but the first ( i  = 0) and last 

scalar equations in (4b), and adding (4c), one derives a tractable matrix equation for the unknown 
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Figure 2. Nodes for Q = 3 and N = 4. Coinciding points are denoted by circles. The subintervals are labelled by the 
symbol p 

vector 
( P I ,  - . . 7 PN, u l ,  . . * 9 UN, P O ,  P N ,  UO, UN)T. 

In the multidomain context this method is called MUCHE with Q = 1, which is explained in the 
following subsection. 

Multidomain discretization 

The physical x-domain [I - 1,1] is covered by subintervals of equal length. Each subinterval is 
mapped onto a computational l-interval [ - 1 ,  11, where standard Chebyshev collocation points 
are defined. By mapping back one obtains the corresponding nodes in the x-domain. 

Let the number of subintervals be Q and the number of nodes in each subinterval be N + 1 .  
Now two possible divisions exist. In fact, two adjacent subintervals may have one (A) or two (B) 
points in common (see Figure 2). 

To be specific, the expressions for the nodes x j , p  are given. Let the subinterval length be I and 
introduce t j  = cos(nj/N). Then, for j = 0,1, . . . , N and p = 1,2, . . . , Q ,  

A: x j , p  = ( I / 2 ) ( l j  + 2p - 1) - 1, with I = 2 / Q ,  

B x j , p  = ( I / 2 ) {  C j  + p [  1 + cos(n/N)] - cos(n/N)} - 1, with 

I = 4/{(1 -cos(n/N)+Q[l +cos(~/N)]}.  

The relation a/& = ( 2 / I ) d / d <  must be taken into account when differentiating. Then the one- 
domain matrix technique for transforming (3a, b) is easily extended to the multidomain case. 
Equations of the same form as (4a, b) are obtained for each subinterval. Hereafter (4a, b) also 
mean the fully discretized and linearized continuity and momentum equation respectively for a 
subinterval. 

Here x j , p  and x i , q  are looked upon as different nodes if j ,p#i, q, even when the two 
points coincide in physical space. By definition the interior points x j , p  are labelled by 
(A) j = l , 2  ,... N - 2 , N - 1 ,  and (B) j = 2 , 3  , . . . ,  N - 3 , N - 2  for all p .  Of course the 
exterior points x j , p  are labelled by (A) j = O ,  N and (B) j=O, 1, N- 1, N for all p. Let S be the 
union of all exterior points; S is an extended separator set. These definitions have been chosen 
because they give matrix equation (5) a simple structure. 

In case A 
s =  {xN,1,x0,1,xN,2, * ' *  ~xO,Q-l~xN,Q?xO,Q> 
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and the conditions coupled with S are 

inflow: p = 0, u = 0 
interfaces: p ,  U, aplax,  auldx are continuous 
outflow: u = 0, equation (4a) is satisfied. 

In addition, (4a, b) are enforced at all interior points. To sum up, the collocated equations and the 
patching conditions yield 2Q(N - 1) + 2 + 4(Q - 1 )  + 2 = 2Q(N + 1 )  scalar algebraic equations. 
It is clear that the total number of scalar algebraic equations equals the number of unknowns. The 
resulting procedure is called MUCHE. Alternatively, let p and u be continuous and (4a, b) be 
collocated at the interfaces. The corresponding procedure is called LUCHE. The patching 
conditions are explained further in Figure 3(a). 

In case B the extended separator set is 

S = { xN, i X N  - 1 . 1 9  xi, 1 3  xo, 1, . - ., X N , Q ,  X N  - 1 . ~ 9  ~ 1 . ~ 9  XO.Q)- 

Some of these points coincide in physical space: 

Xi, z = XN, 1, X o .  2 = X N  - 1, i , . . . 5  xi,^ = X N , Q  - 1 3  XO.Q = XN - I , Q  - 1. 

The conditions satisfied at the inflow and outflow points are the same as those in caseA 
while (4a, b) are collocated at the points nearest to the inflow and the outflow. At the sub- 
interval interfaces the quantities p and u are continuous. The additional patching conditions 
may be specified in various ways. Here four options are considered; the corresponding 
procedures are called AICHE, BICHE, CICHE and DICHE; see Figure3(b) for details. 
At the interior nodes equations (4a, b) are collocated. In all, the number of scalar equations is 

Obviously, the six procedures differ in two ways. Firstly, the subintervals are patched in 
different ways. The procedures AICHE, BICHE, CICHE and MUCHE represent couplings of 
almost the same strength, while the coupling is stronger in DICHE and weaker in LUCHE. 
Secondly, MUCHE and LUCHE use one set of nodes and AICHE, BICHE, CICHE and DICHE 
another set. These sets are close to each other when the number of nodes in each subinterval is 
large. 

All procedures are implemented analogously using the Schur complement method developed 
for elliptic partial differential  equation^.^ Thus the scalar equations are permuted into the form 

2 ( N -  3)Q + 4  + 8(Q - 1)  + 4  = 2 ( N  + 1)Q. 

i." AT, . .  ATQ BT, ;q:.y UVQ i":i VQ 3 

(5 )  

CT, CT, . . .  CTQ AS us RS 

where the unknown vectors are UV,, p = 1 , .  . . , Q, and US. UV, is built by the interior 
unknowns and US by the exterior unknowns, i.e. by set S. The matrices AT, and BT, correspond 
to the continuity and momentum equations, while CT,, . . . , CTQ and AS correspond to the 
patching conditions. 

In order to solve (9, one first eliminates UV,, p = 1, . . . , Q, and gets an equation for US with a 
modified matrix AS, which is often called the capacitance matrix. The matrices BT, and CT, are 
sparse and it is possible to avoid fill-in. Then US is back-substituted in the equation for the UV, 
and the UV, are calculated. This procedure may fail if the AT, and the modified matrix AS are ill- 
conditioned. As a precaution, all condition numbers are estimated by the algorithm given in 
Reference 8. 
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(4a) satisfied LLJcHE 

(4b) satisfied 

h u x  

Figure 3(a). Conditions pertinent to interfaces with one point in common 

ACHE ,(4a), (4b) satisfied 

equal U. auiax equal p. ap/ a x 

BlCHE 

A (4a). (4b) satisfied 

, (4a). (4b) satisfied 

C n 

-‘(4a), (4b) satisfied 

CICHE , (4a). (4b) satisfied 

equalp. u f equalp, u 

A ( 4 a ) .  (4b) satisfied 

MCHE - 
equal R u,apiax,auiax [ equal p, u,ap/ax,auiax - 

Figure 3(b). Conditions pertinent to interfaces with two points in common 

RESULTS 

Short-time results and accuracy 

The errors appearing when solving (1) are classified as follows. 

(1)+(2), time discretization error 
(2)+(3), linearization error 
(3)+(5), space discretization error 
(5) is solved, round-off error. 
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Table I. Average increment A1 after 20 time steps. Initial solution CFS. Code MUCHE. N = 32, Q = 1 

AI 0.3 x 10-14 0.3 x 10-5 0-3x 100 0.2 x 101 0.2 x 102 0.3 x 100 0-3 x 10-5 0.2 x 10-13 
CF 6400 6400 6400 400 20 20 20 20 
NI 3 2 1 1 1 2 3 4 

These errors are functions of the time step At and of the parameters N and Q which determine the 
spatial resolution. 

Of course a small At gives a small time discretization error by the Crank-Nicolson scheme. But 
a small At also yields a small round-off error. In fact the matrices connected with the solution of 
the boundary value problem ( 5 )  become better-conditioned as At shrinks and the round-off error 
consequently decreases. This effect, however, is difficult to evaluate quantitatively since the 
condition numbers also depend on the shape of p and u, the spatial resolution and the patching 
(see Table 11). The symbols p and u have here resumed their original senses. Hence p and u stand 
for density and velocity respectively. 

In addition, as At shrinks, the changes of p and u between adjacent time levels diminish. 
Therefore the average increment from one Newton iteration to another is a decreasing function of 
the computational frequency CF ( = 2/At). Table I confirms this fact. Here the average increment 
A1 is one-fifth of the sum of the moduli of the increments of p,  u, ap/ax, &/ax and a2u/ax2 at the 
nodes, divided by the number of nodes. The number of Newton iterations is designated NI. 
Obviously, the increments decrease rapidly as the number of Newton iterations increases; the 
functions pk uk converge rapidly towards p", u". Analogous results apply for Q > 1. 

The multidomain technique permits a good spatial resolution of the physical interval [ - 1, 11 
without increasing the order of the matrix equations which have to be solved by LU decomposi- 
tion. Indeed, the number of nodes in each subinterval, N + 1, is chosen so large that one can 
benefit from exponential convergence, and so small that the round-off errors are not serious. The 
number of subintervals, Q, is then adjusted so that the functions p and u are smooth enough in 
each subinterval. The parameters CF = 20, N = 12, Q = 5 or CF = 20, N = 16, Q = 3 give a 
balanced result where the errors due to space integration are of the same order of magnitude as 
those due to time integration. In general, two Newton iterations are demanded for CF = 20. 
Using these parameter values, all tested procedures give accurate solutions after one time step, 
at t = 0 1 .  However, as shown below, only AICHE, CICHE and MUCHE are long-time stable. 
By comparing the outcomes of different runs, it is found that four significant figures p and u result 
for tE[O, lo] using any long-time-stable code. If better accuracy is desired, one can choose 
CF = 800. Now it turns out that only one Newton iteration is sufficient. 

These results are obtained using double precision on a 32  bit computer with intrinsic 
programmes such that 

cos(tan-' 1) = 0.57 x 

Long-time results and stability 

The stability properties depend mainly on the initial values p and u, the parameters CF, N 
and Q, as well as on the patching. Table I1 gives the time when numerical disturbances develop. 
Of course the errors evolve gradually and the given times are approximate. 

The condition number of the modified matrix AS, COND, has been shown since the unknowns 
at the interfaces are calculated first by the procedure used to solve (5). Hence the round-off errors 
connected with this calculation are transferred also to the other unknowns. However, there does 
not seem to be any simple relation between the round-off errors and the stability. In Table I1 the 



MULTIDOMAIN COLLOCATION TECHNIQUES 651 

Table 11. Time TI when instability appears. CF = 20, NI = 1 

Constant-flux initial solution Equilibrium initial solution 

Code TI COND TI COND 

AICHE > 10 0.4 x 104 > 10 0.4 x 104 

BICHE 0.2 0.6 x 103 2 0.1 x 105 

CICHE > 10 0.5 x 103 > 10 0 7  x 103 

DICHE 7 0.1 x 105 > 10 0.9 x 104 

MUCHE > 10 0.3 x 103 > 10 0.4 x 103 

N = 12, Q = 5 

N = 12,Q = 5 

N = 1 2 , Q = 5  

N = 1 2 , Q = 5  

N = 12,Q = 5 
MUCHE 4 > 10 
N = 32,Q = 1 

N = 2, Q = 30 

N = 12, Q = 5 

MUCHE 2 0 2  x 103 > 10 0.2 x 103 

LUCHE 0.6 0.3 x 107 0 8  0 8  x lo5 

computational frequency CF equals 20. Increasing CF leads to a more stable procedure. Detailed 
studies have been performed for MUCHE with Q = 1 in Reference 5. The number of Newton 
iterations has little influence on the stability properties. 

Among the procedures above, AICHE, CICHE and MUCHE with N = 12, Q = 5 are the most 
stable ones. The procedures AICHE and BICHE are similar, but BICHE is unstable. In BICHE 
the function p and its derivative @/ax are not patched at the same point in the overlap, whereas 
they are in AICHE. The same is true for u and au/ax (see Figure 3(b)). As observed by the 
reviewer, in BICHE the requirements on p, u and ap/ax, &/ax are too weak for ensuring unique 
p and u, and an instability develops. 

The scheme LUCHE is also unstable. Looking at the outcomes from runs with LUCHE, one 
observes that the first sign of instability is the behaviour of the derivatives ap/ax and au/dx. They 
vary slowly in the bulk of each subinterval and rapidly at the end points after a small number of 
time steps. The coupling between the subintervals seems to be insufficient. Alternatively, consider 
an interior subinterval of LUCHE. Equation (4a) is collocated at the right end and (4b) at the left 
end; compare Figure 3(a). It is now of interest to alter CICHE in such a way that (4a) be 
collocated twice at the two right end points and (4b) twice at the left ones. This form of CICHE is 
similar to LUCHE and they both have bad stability properties. Hence the instability of LUCHE 
may be attributed to a rather unsymmetric collocation of the governing equations. 

The weakly unstable procedure DICHE is similar to MUCHE which is stable. However, the 
number of nodes where (4a, b) are not collocated is larger in DICHE than in MUCHE. In 
addition, the round-off error is larger in DICHE than in MUCHE. 

Two extreme cases of MUCHE are also considered. The one-domain version (N = 32, Q = 1) 
is not as good as the multidomain approximation with spectral accuracy in each subdomain 
(N = 12, Q = 5). Also, the version with N = 2, Q = 30 is unsatisfactory. This degenerate 
spectral method is a second-order spline function approximation of p and u with low accuracy. 
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Table 111. Error development. Equilibrium initial solution (AES). 
Code MUCHE. CF = 20, NI = 1 

~~ 

t = 1 ( p  - peq 1 at x x - 1 0 8  x 10- l2 0.3 x 10- lo  

0.5 x 10-7 0.7 10-7 IP-Peql at x = 1 
m y l p  - Peql  0.5 x 10-7 0.7 10-7 
I j - I  (P-PeCJdxl 
A1 0-5 x 10-8 0.3 x 10-5 

I p - peq I at x x - 1 
0.4 10-7 0.5 x 10-7 I P - P e s l  at x x 1 

IJ-l(P-Peq)dxI 0.1 x 10-6 0.2 x 10-6 

0.7 x lo-' 0 8  x lo-' 

t = 10 0.5 x 0.2 x 10-8 

mfxlP - Pcql 0.2 x 10-6 0.3 x 

A1 0.1 x 10-8 0.7 x 
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Figure 4. (a) Time history of the density profile. Initial solution CFS. Code MUCHE. CF = 20, NI = 2, N = 12, Q = 5. 
(b) Equilibrium value of p minus value of p at t = 75 and t = 100. The same run as in (a) 

The error development is studied in detail using MUCHE with the equilibrium solution as the 
initial and the reference one. After a short time the errors of p and u are largest at the outflow. 
Then the errors spread upstream and reach a maximum near the inflow; the maximum is at 
x % - 0.6 for t = 10. No unphysical ripples appear and the average increment A1 decreases 
monotonically as time increases. It seems as if the density and velocity distributions approach 
new, slightly altered equilibrium solutions. As a rule the errors of u and h / a x  are less than the 
errors of p and ap/ax respectively at corresponding points. Some numerical data are given in 
Table 111. 

Another interesting test of the code MUCHE has been performed. Using MUCHE, one can 
follow how the constant-flux initial solution (CFS) evolves towards equilibrium. As illustrated in 
Figure 4, at t = 100 the density differs by less than 001 from its equilibrium value and the 
difference has a maximum where the profile is steep. No disturbances are visible. 

The codes AICHE and CICHE with CF = 20, NI = 2, N = 12, Q = 5 have passed the same 
long-time test. At time t = 100 MUCHE, AICHE and CICHE yield p and u where corresponding 
values agree to within four or five significant figures. 
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CPU time 

Using the code MUCHE, the number of operations required to reach the solution at time t is of 
the order of magnitude 

t - CF .NI - { Q [ 2 ( N  - l )I3 + (4Q)3} 

In fact the CPU time is almost the same for N = 12, Q = 5 as for N = 16, Q = 3, while N =  32, 
Q = 1 takes roughly three times longer machine time. On a Macintosh I1 the CPU time is 6.5 min 
for a run with t .CF-NI  = 100 and N = 12, Q = 5 or N = 16, Q = 3. 

As a rule the codes AICHE and CICHE demand more CPU time than MUCHE for 
comparable runs. The run mentioned above with N = 12, Q = 5 takes 7.5 min for AICHE or 
CICHE. 
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